
287 

 

 

 22 Problem Spaces and Search 
 

 
Chapter 

Objectives 
Uninformed state space search strategies are revisited: 
 Depth-first search 
Breadth-first search 
Heuristic or best-first search is presented 
Java idioms are created for implementing state-space search 
 Establishing a framework 
  Interface class 
   Solver 
   AbstractSolver 
  Implements search algorithms 

Chapter 
Contents 

22.1 Abstraction and Generality in Java 
22.2 Search Algorithms 
22.3 Abstracting Problem States 
22.4 Traversing the Solution Space 
22.5 Putting the Framework to Use 

 

 

 22.1 Abstraction and Generality in Java 

 This book, like the history of programming languages in general, is a story 
of increasingly powerful abstraction mechanisms. Because of the 
complexity of the problems it addresses and the rich body of theory that 
defines those problems in computational terms, AI has proven an ideal 
vehicle for developing languages and the abstraction mechanisms that give 
them much of their value. Lisp advanced ideas of procedural abstraction by 
following a mathematical model – recursive functions – rather than the 
explicitly machine influenced structures of earlier languages. The result was 
a sophisticated approach to variable binding, data structures, function 
definition and other ideas that made Lisp a powerful test bed for ideas 
about symbolic computing and programming language design. In 
particular, Lisp contributed to the development of object-oriented 
programming through a variety of Lisp-based object languages culminating 
in the Common Lisp Object System (CLOS). Prolog took a more radical 
approach, combining unification based pattern matching, automated 
theorem proving, and built-in search to render procedural mechanisms 
almost completely implicit and allow programmers to approach programs 
in a declarative, constraint-based manner. 

This chapter continues exploring abstraction methods, taking as its focus 
the object-oriented idiom, and using the Java programming language as a 
vehicle. It builds on Java’s object-orientated semantics, employing such 
mechanisms as inheritance and encapsulation. It also explores the 
interaction between AI theory and program architecture: the problems of 



288 Part IV: Programming in Java 
 

rendering theories of search and representation into code in ways that 
honor the needs of both. In doing so, it provides a foundation for the 
search engines used in expert systems, cognitive models, automated 
reasoning tools, and similar approaches that we present later. As we 
develop these ideas, we urge the reader to consider the ways in which AI 
theories of search and representation shaped programming techniques, and 
the abstractions that project that theory into working computer programs. 

One of the themes we have developed throughout this book concerns 
generality and reuse. Through the development of object-oriented 
programming, many of these ideas have evolved into the notion of a 
framework: a collection of code that furnishes general, reusable 
components (typically data structures, algorithms, software tools, and 
abstractions) for building a specific type of software. Just as a set of 
modular building components simplifies house construction, frameworks 
simplify the computational implementation of applications.  

Creating useful frameworks in Java builds on several important abstraction 
mechanisms and design patterns. Class inheritance is the most basic of 
these, allowing us to specify frameworks as general classes that are 
specified to an application. However, class inheritance is only the starting 
point for the subtler problems of implementing search algorithms. 
Additional forms of abstractions we use include interfaces and generic 
collections. 

Our approach follows the development of search algorithms leading to the 
Lisp and Prolog search shells in Chapters 4 and 14 respectively, but 
translates it into the unique Java idiom. We encourage the reader to reflect 
on the differences between these approaches and their implications for 
programming. Before implementing a framework for basic search, we 
present a brief review of the theory of search. 

 

             22.2 Search Algorithms 

 Search is ubiquitous in computer science, particularly in Artificial 
Intelligence where it is the foundation of both theoretical models of 
problem solving, practical applications, and general tools and languages 
(including Prolog). This chapter uses the theory of search and Java idioms 
to develop a framework for implementing search strategies. We have 
explored the theory of Artificial Intelligence search elsewhere (Luger 2009, 
Chapters 3, 4, and 6), but will review the key theoretical ideas briefly. 

Both the analysis of problem structure and the implementation of problem 
solving algorithms depend upon modeling the structure of a problem 
graphically: as a state-space.  The elements defining a state-space are: 

A formal representation of possible states of a problem 
solution. We can think of these as all possible steps in a solution 
process, including both complete solutions and partial steps 
toward them. An example of a state might be a configuration of a 
puzzle like the Rubik’s cube, an arrangement of tiles in the 16-
puzzle, or a complex set of logical assertions in an expert system.  



 Chapter 22 Problem Spaces and Search 289 

 

Operators for generating new states from a given state. In 
our puzzle example, these operators are legal moves of the 
puzzle. In more sophisticated applications, they can be logical 
inferences, steps in data interpretation, or heuristic rules for 
expert reasoning. These operators not only generate the next 
states in a problem solving process, but also define the arcs or 
links in a state-space graph.  

Some way of recognizing a goal state.  

A starting state of the problem, represented as the root of 
the graph. 

Figure 22.1 shows a portion of the state-space for the 8-puzzle, an example 
we will develop later in this chapter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 22.1. A sample state space to be searched. The goal is to have the 
numbers in clockwise order from the upper left hand corner. States are 

generated by “moving” the blank. 

Our discussion begins with two basic “uninformed” algorithms: depth-first 
search (DFS) and breadth-first search (BFS). We call these “uninformed” 
because they do not use knowledge of the problem-space to guide search, 
but proceed in a fixed order. DFS picks a branch of the search space and 
follows it until it finds a goal state; if the branch ends without finding a 
goal, DFS “backs up” and tries another branch. In contrast, breadth-first 
search goes through the state space one layer at a time.  

Figure 22.2 illustrates the difference between these approaches for the 8-
puzzle problem, where depth-first search is given a five level depth bound. 
Note that although both searches find solutions, breadth-first search finds 
the solution that is closest to the root or start state. This is always true 
because BFS does not consider a solution path of distance d from the start 
until it has considered all solution paths of distance d-1 from the start. 

 



290 Part IV: Programming in Java 
 

 

 
a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 22.2.  Depth-first search (a), using a depth bound of five levels, 
and breadth-first search (b) of the 8-puzzle. States are generated by 

“moving” the blank space. 

These algorithms search a state-space in very different orders, but share a 
common general structure: both go through an iterative process of 
selecting a state in the graph, beginning with the start-state, quitting with 
success if the state is a goal, and generating its child states if it is not. What 
distinguishes them is how they handle the collection of child states. The 
following pseudo code gives a basic search implementation: 



 Chapter 22 Problem Spaces and Search 291 

 

Search(start-state) 

{ 

 place start-state on state-list; 

 while (state-list is not empty) 

 { 

  state = next state on state-list; 

  if(state is goal)  

          finish with success; 

  else 

   generate all children of state and  

   place those not previously visited  

   on state-list; 

 } 

} 

This algorithm is the general structure for all the implementations of search 
in this chapter: what distinguishes different search algorithms is how they 
manage unvisited states. DFS manages the state-list as a stack, while 
BFS uses a queue. The theoretical intuition here is that the last-in/first-out 
nature of a stack gives DFS its aggressive qualities of pursuing the current 
path. The first-in/first-out state management of a queue assures the 
algorithm will not move to a deeper level until all prior states have been 
visited. (It is worth noting that the Prolog interpreter maintains execution 
states on a stack, giving the language its depth-first character). 

However, BFS and DFS proceed blindly through the space. The order of 
the states they visit depends only on the structure of the state space, and as 
a result DFS and/or BFS may not find a goal state efficiently (or at all). 
Most interesting problems involve multiple transitions from each problem 
state. Iterating on these multiple child states through the entire problem 
space often leads to an exponential growth in the number of states 
involved in the state-list. For small enough spaces, we can find a 
solution through uninformed search methods. Larger spaces, however, 
must be searched intelligently, through the use of heuristics. Best-first search 
is our third algorithm; it uses heuristics to evaluate the set of states on 
state-list in order to choose which of several possible branches in a 
state space to pursue next.  Although there are general heuristics, such as 
means-ends analysis and inheritance (Luger 2009), the most powerful 
techniques exploit knowledge unique to the particular problem domain. 

A general implementation of best-first or heuristic search computes a 
numerical estimate of each state’s “distance” from a solution. Best-first 
search always tries the state that has the closest estimate of its distance to a 
goal. We can implement best-first search using the same general algorithm 
as the other state space searches presented above, however we must assign 
a heuristic rank to each state on the state-list, and maintain it as a 
sorted list, guaranteeing that the best ranked states will be evaluated first. 
state-list is thus handled as a priority queue. 



292 Part IV: Programming in Java 
 

This summary of search is not intended as a tutorial, but rather as a brief 
refresher of the background this chapter assumes. We refer readers who 
need further information on this theory to an AI text, such as Luger (2009, 
see Chapters 3 and 4).  

             21.3 Abstracting Problem States 

 We begin with the search pseudo-code defined above, focusing on the 
problem of representing states of the search space, as is typical of AI 
programming. This also reflects architectures we have used throughout the 
book: the separation of representation and control. Because of the relative 
simplicity of the search algorithms we implement, we approach this as 
separate implementations of states and search engines. 

Our goal is to define an abstract representation of problem states that 
supports the general search algorithm and can be easily specialized through 
the mechanism of class inheritance. Our basic approach will be to define a 
class, called State, that specifies the methods common to all problem 
states and to define subclasses that add problem-specific information to it, 
as we see in Figure 22.3. 

 

 
 

Figure 22.3. State representation for search containing problem-specific 
specifications. 

In many cases, general class definitions like State will implement methods 
to be used (unless overridden) by descendant classes. However, this is only 
one aspect of inheritance; we may also define method names and the types 
of their arguments (called the method signature), without actually 
implementing them. This mechanism, implemented through abstract 
classes and methods, allows us to specify a sort of contract with future 
extensions to the class: we can define other methods in the framework to 
call these methods in instances of State‘s descendants without knowing 
how they will implement them. For example, we know that all states must 
be able to produce next moves, determine if they are a solution, or 
calculate their heuristic value, even though the implementation of these is 
particular to specific problem states.  

We can specify this as an abstract class: 

 



 Chapter 22 Problem Spaces and Search 293 

 

public abstract class State 

{ 

 public abstract Set<State> getPossibleMoves(); 

 public abstract boolean isSolution(); 

 public abstract double getHeuristic(); 

} 

Note that both the methods and the class itself must be labeled 
abstract. The compiler will treat efforts to instantiate this class as 
errors. Abstract methods are an important concept in object-oriented 
programming, since the signature provides a full specification of the 
method’s interface, allowing us to define code that uses these methods 
prior to their actual implementation.  

Requiring the state class to inherit from the State base class raises a 
number of design issues. Java only allows inheritance from a single parent 
class, and the programmer may want to use the functionality of another 
parent class in creating the definition of the state. In addition, it seems 
wasteful to use a class definition if all we are defining are method 
signatures; generally, object-oriented programming regards classes as 
containing at least some state variables or implemented methods.  

Java provides a mechanism, the interface, which addresses this problem. If 
all we need is a specification – essentially, a contract – for how to interact 
with instances of a class, we leave the implementation to future developers, 
we can define it as an interface. In addition to having a single parent 
class, a class can be declared to implement multiple interfaces. 

In this case, we will define State as an interface.  An interface is like a 
class definition in which all methods are abstract: it carries no 
implementation, but is purely a contract for how the class must be 
implemented. In addition to the above methods, our interface will 
also define methods for getting the parent of the state, and its distance 
from the goal: 

public interface State  

{ 

 public Iterable<State> getPossibleMoves(); 

 public boolean isSolution(); 

 public double getHeuristic(); 

 public double getDistance(); 

 public State getParent(); 

} 

Note in this situation the expression Iterable<State> returned by 
getPossibleMoves(). The expression, Iterable<State> is part of 
Java’s generics capability, which was introduced to the language in Java 1.5. 
Generics use the notation Collection-Type<Element-Type> to 
specify a collection of elements of a specific type, in this case, an 
Iterable collection of objects of type State. In earlier versions of 



294 Part IV: Programming in Java 
 

Java, collections could contain any descendants of Object, the root of 
Java’s class hierarchy. This prevented adequate type checking on collection 
elements, creating the potential for run-time type errors. Generics prevent 
this, allowing us to specify the type of collection elements. 

Like State, Iterable<State> is an interface, rather than a class 
definition. Iterable defines an interface for a variety of classes that allow 
us to iterate over their members. This includes the Set, List, Stack, 
PriorityQueue and other collection classes. We could define this 
collection of child states using a specific data structure, such as a list, stack, 
etc. However, it is generally a bad idea to constrain later specialization of 
framework classes unnecessarily. Suppose the developer has good reason 
to collect child states in a different data structure? Once again, by using an 
interface to define a data type, we create a contract that will allow our 
search framework to implement functions that use classes, while leaving 
their instantiation to future programmers. 

This interface is adequate to implement the search algorithms of Section 
22.1, but before implementing the rest of our framework, note that two of 
the methods specified in the State interface are general enough to be 
defined for most, if not all, problems:  getDistance() computes the 
distance from the start state, and getParent() returns the parent state 
in the search space. To simplify the work for future programmers, we 
implement a class, AbstractState, that provides a default 
implementation of these methods. 

 

public abstract class AbstractState implements    

         State  

{ 

 private State parent = null; 

 private double distance = 0; 
 

 public AbstractState() {} 

 public AbstractState(State parent)  

   { 

  this.parent = parent; 

  this.distance = parent.getDistance() + 1; 

 } 

 public State getParent()  

   { 

  return parent; 

 } 

 public double getDistance() 

   { 

  return distance; 

 } 

} 
 



 Chapter 22 Problem Spaces and Search 295 

 

Note that AbstractState implements the State interface, so classes 
that extend it can be used in our framework, freeing the programmer for 
the need to implement certain methods. It may seem that we have gone in 
a circle in this discussion, first defining State as an abstract class, then 
arguing that it should be an Interface, and now reintroducing an 
abstract class again. However, there are good reasons for this approach. 
Figure 22.4 illustrates a common Java design pattern, the use of an 
interface to specify an implementation “contract”, with an abstract class 
providing default implementations of general methods. 

 

 
 

Figure  22.4. A Java design pattern: using an interface to specify a 
contract. 

The pattern of specifying method signatures in an interface and providing 
default implementations of certain methods in an abstract class, is common 
in Java. By defining all methods required of the framework in an interface 
and using the interface to specify all types, we do not constrain future 
programmers in any way. They can bypass the abstract class entirely to 
address efficiency concerns, the needs of a problem that may not fit the 
default implementations, or simply to improve on the defaults. In many 
situations, however, programmers will use the abstract class 
implementation to simplify coding. 

The next section repeats this pattern in implementing the control portion 
of our framework: the depth-first, breadth-first, and best-first search 
algorithms described earlier. 

             22.4 Traversing the Problem Space 

 Although simple, the State interface fully specifies the “contract” 
between the search framework and developers of problem-specific state 
representations. It gives the method signatures for testing if a state is a 
goal, and for generating child states. It leaves the specific representation to 
descendant classes. The next task is to address the implementation of 
search itself: defining the list of states and the mechanisms for moving 



296 Part IV: Programming in Java 
 

through them in search. As with State, we will begin with an 
interface definition: 

public interface Solver  

{ 

 public List<State> solve(State initialState); 

} 

Although simple, this captures a number of constraints on solvers. In 
addition to requiring an initial state as input, the solve method returns the 
list of visited states as a result. Once again, it defines the returned 
collection using a generic interface. A List<E> is a collection of ordered 
elements of type E. As with Set<E>, the list interface is supported by a 
variety of implementations. 

Using the pattern of Figure 22.4, we will provide an abstract 
implementation of Solver. The code fragment below implements a 
general search algorithm that does not specify the management of open 
states: 

private Set<State> closed = new HashSet<State>(); 

public List<State> solve(State initialState)  

{                         //Reset closed and open lists 

 closed.clear(); 

 clearOpen(); 

 addState(initialState); 

 while (hasElements())  

   { 

  State s = nextState(); 

  if (s.isSolution()) 

   return findPath(s); 

  closed.add(s); 

  Iterable<State> moves =  

             s.getPossibleMoves(); 

  for (State move : moves) 

   if (!closed.contains(move)) 

    addState(move); 

 } 

 return null; 

} 

In this method implementation, we maintain a closed list of visited states 
to detect loops in the search. We maintain closed as a Set<State> and 
implement it as a HashSet<State> for efficiency. We use the 
Set<State> interface since the closed list will contain no duplicates. 

The solve method begins by clearing any states from the closed list, 
and adding the initial state to the open list using the addState method. 
We specify addState as an abstract method, along with the methods 



 Chapter 22 Problem Spaces and Search 297 

 

hasElements() and nextState(). These methods allow us to add and 
remove states from the open list, and test if the list is empty. We specify 
them as abstract methods to hide the implementation of the open list, 
allowing the particular implementation to be defined by descendents of 
AbstractSolver. 
The body of the method is a loop that: 

Tests for remaining elements in the open list, using the abstract 
method hasElements(); 

Acquires the next state from the list using the abstract method 
nextState(); 

Tests to see if it is a solution and returns the list of visited states 
using the method findPath (to be defined); 

Adds the state to the closed list; and 

Generates child states, placing them on the open list using the 
abstract addState() method. 

Perhaps the most significant departure from the Lisp and Prolog versions 
of the algorithm is the use of an iterative loop, rather than recursion to 
implement search. This is mainly a question of style. Like all modern 
languages, Java supports recursion, and it is safe to assume that the 
compiler will optimize tail recursion so it is as efficient as a loop. However, 
Java programs tend to favor iteration and we follow this style. 

We have now implemented the general search algorithm. We complete the 
definition of the AbstractSolver class by defining the findPath 
method and specifying the abstract methods that its descendents must 
implement: 

public abstract class AbstractSolver implements  
          Solver 
{ 

 private Set<State> closed =  
          new HashSet<State>(); 

 public List<State> solve(State initialState) 

 {                          // As defined above 

 } 

 public int getVisitedStateCount()  

    { 

  return closed.size(); 

 } 

 private List<State> findPath(State solution)  

    { 

  LinkedList<State> path =  

               new LinkedList<State>(); 

  while (solution != null) { 

   path.addFirst(solution); 

   solution = solution.getParent(); 



298 Part IV: Programming in Java 
 

  } 

  return path; 

 } 

 protected abstract boolean hasElements(); 

 protected abstract State nextState(); 

 protected abstract void addState(State s);  

 protected abstract void clearOpen(); 

}  

Note once again how the abstract methods hide the implementation of the 
maintenance of open states. We can then implement the different search 
algorithms by creating subclasses of AbstractSolver and 
implementing these methods. Depth-first search implements them using a 
stack structure: 

public class DepthFirstSolver extends AbstractSolver  

{  

 private Stack<State> stack = new Stack<State>(); 

 protected void addState(State s)  

    { 

  if (!stack.contains(s)) 

   stack.push(s); 

 } 

 protected boolean hasElements()  

    { 

  return !stack.empty(); 

 } 

 protected State nextState()  

    { 

  return stack.pop(); 

 } 

 protected void clearOpen() 

    { 

  stack.clear(); 

 } 

} 

Similarly, we can implement breadth-first search as a subclass of 
AbstractSolver that uses a LinkedList implementation: 

public class BreadthFirstSolver extends  
          AbstractSolver  

{ 

 private Queue<State> queue =  
          new LinkedList<State>(); 

 protected void addState(State s)  

    { 



 Chapter 22 Problem Spaces and Search 299 

 

  if (!queue.contains(s)) 

   queue.offer(s); 

 } 

 protected boolean hasElements()  

    { 

  return !queue.isEmpty(); 

 } 

 protected State nextState()  

    { 

  return queue.remove(); 

 } 

 protected void clearOpen()  

    { 

  queue.clear(); 

 } 

} 

Finally, we can implement the best-first search algorithm by extending 
AbstractSolver and using a priority queue, PriorityQueue, to implement 
the open list: 

public class BestFirstSolver extends AbstractSolver 
{ 

 private PriorityQueue<State> queue = null; 

 public BestFirstSolver()  

    { 

  queue = new PriorityQueue<State>(1, 
                  new Comparator<State>() 

             { 

   public int compare(State s1, State s2) 

     {          

   //f(x) = distance + heuristic 

     return Double.compare( 

   s1.getDistance() + s1.getHeuristic(), 

   s2.getDistance() + s2.getHeuristic()); 

   } 

   }); 

 } 

 protected void addState(State s)  

    { 

  if (!queue.contains(s)) 

   queue.offer((State)s); 

 } 

 



300 Part IV: Programming in Java 
 

 protected boolean hasElements()  

    { 

  return !queue.isEmpty(); 

 } 

    protected State nextState()  

       { 

     return queue.remove(); 

       } 

    protected void clearOpen() 

    { 

     queue.clear(); 

 } 

} 

In defining the open list as a PriorityQueue, this algorithm passes in 
a comparator for states that uses the heuristic evaluators defined in the 
State interface. 

Note that both BreadthFirstSolver and BestFirstSolver 
define the open list using the interface Queue<State>, but instantiate 
them as LinkedList<State> and PriorityQueue<State> 
respectively. This suggests we could gain further code reuse by combining 
these definitions into a common superclass. This is left as an exercise. 

             22.5 Putting the Framework to Use 

 All that remains in order to apply these search algorithms is to define an 
appropriate state representation for a problem. As an example, we define a 
state representation for the framer, wolf, goat and cabbage, FWGC, problem as 
a subclass of AbstractState. (We have presented representations and 
generalized search strategies for the FWGC problem in both Prolog, 
Chapter 4 and Lisp, Chapter 13. These different language-specific 
approaches to the same problem can offer insight into the design patterns 
and idioms of each language.) 

The first step in this implementation is representing problem states. A 
simple, and for this problem effective, way to do so is to define the 
location of each element of the problem. Following a common Java idiom, 
we will create a user-defined type for locations using the Java enum 
capability. This simplifies readability of the code. We will also create two 
constructors, one that creates a default starting state with everyone on the 
east bank, and a private constructor that can create arbitrary states to be 
used in generating moves: 

public class FarmerWolfGoatState extends  
           AbstractState  

{ 

 enum Side  

    { 

        EAST { public Side getOpposite()  



 Chapter 22 Problem Spaces and Search 301 

 
    { return WEST; } }, 

        WEST { public Side getOpposite()  
    { return EAST; } };     

        abstract public Side getOpposite(); 

    } 

    private Side farmer = Side.EAST; 

    private Side wolf = Side.EAST; 

    private Side goat = Side.EAST; 

    private Side cabbage = Side.EAST; 

    /** 

     * Constructs a new default state with everyone on the east side. 

     */ 

    public FarmerWolfGoatState()  

    {} 

    /** 

     * Constructs a move state from a parent state.      

     */ 

    public FarmerWolfGoatState( 
   FarmerWolfGoatState parent,  
      Side farmer, Side wolf,  
   Side goat, Side cabbage)  
     { 

        super(parent); 

        this.farmer = farmer; 

        this.wolf = wolf; 

        this.goat = goat; 

        this.cabbage = cabbage; 

    } 
} 

Having settled on a representation, the next step is to define the abstract 
methods specified in AbstractState. We define isSolution() as a 
straightforward check for the goal state, i.e., if everyone is on the west 
bank: 

public boolean isSolution()  

{ 

        return farmer==Side.WEST &&  

               wolf==Side.WEST && 

               goat==Side.WEST &&  

               cabbage==Side.WEST; 

} 

The most complex method is getPossibleMoves(). To simplify this 
definition, we will use the getOpposite() method defined above, and 
addIfSafe(. . .) will add the state to the set of moves if it is legal: 



302 Part IV: Programming in Java 
 

private final void addIfSafe(Set<State> moves)  

{ 

        boolean unsafe =  

      (farmer != wolf && farmer != goat) || 

              (farmer != goat && farmer != cabbage); 

        if (!unsafe) 

            moves.add(this); 

} 

Although simple, these methods have some interest, particularly their use 
of the final specification. This indicates that the method will not be 
redefined in a subclass. They also indicate to the compiler that it can 
substitute the actual method code for a function call as a compiler 
optimization. We implement getPossibleMoves: 

public Iterable<State> getPossibleMoves()  

{ 

        Set<State> moves = new HashSet<State>();                                    

        if (farmer==wolf)                  //Move wolf 

            new FarmerWolfGoatState( 

    this,farmer.getOpposite(), 

                    wolf.getOpposite(), 

                 goat,   

    cabbage).addIfSafe(moves); 

        if (farmer==goat)                  //Move goat 

            new FarmerWolfGoatState( 

    this,farmer.getOpposite(), 

                 wolf, 

    goat.getOpposite(),   
    cabbage).addIfSafe(moves); 

        if (farmer==cabbage)            //Move cabbage 

            new FarmerWolfGoatState( 

    this,farmer.getOpposite(), 

                 wolf, 

                 goat, 

      cabbage.getOpposite()). 

       addIfSafe(moves); 

  new FarmerWolfGoatState(  //Move just farmer 

    this,farmer.getOpposite(), 

                 wolf, 

                 goat,       

    cabbage).addIfSafe(moves); 

        return moves; 

} 



 Chapter 22 Problem Spaces and Search 303 

 

Although we will leave implementation of getHeuristic() as an 
exercise, there are a few more details we must address. Among the 
methods defined in Object (the root of the Java hierarchy), are equals 
and hashCode. We must override the default definitions of these because 
two states should be considered equal if the four participants are at the 
same location, ignoring the move count and parent states that are also 
recorded in states. Simple definitions of these methods are:  

public boolean equals(Object o)  

{ 

        if (o==null ||  

   !(o instanceof FarmerWolfGoatState)) 

        return false; 

        FarmerWolfGoatState fwgs =  

        (FarmerWolfGoatState)o; 

        return farmer  == fwgs.farmer &&  

               wolf    == fwgs.wolf &&  

               cabbage == fwgs.cabbage && 

               goat    == fwgs.goat; 

 } 

public int hashCode()  

{ 

        return (farmer  == Side.EAST ? 1 : 0)+ 

               (wolf    == Side.EAST ? 2 : 0)+ 

               (cabbage == Side.EAST ? 4 : 0)+ 

               (goat    == Side.EAST ? 8 : 0); 

} 

This chapter examined a number of Java techniques and idioms. Perhaps 
the most important, however, is the use of interfaces and abstract classes to 
specify a contract for viable extensions to the basic search methods. This 
was essential to our approach to building reusable search methods, and will 
continue to be an important abstraction method throughout Part IV. 

  Exercises 

 1. Building on the code and design patterns suggested in Chapter 22, finish 
coding and run the complete solution of the Farmer, Wolf, Coat, and 
Cabbage problem. Implement depth-first, breadth-first, and best-first 
solutions. 

2. At the end of section 22.4, we noted that the LinkedList<State> 
and PriorityQueue<State> used to manage the open list in 
BreadthFirstSolver and BestFirstSolver respectively both 
used the interface Queue<State>. This suggests the possibility of 
creating a superclass of both solvers to provide shared definitions of the 
open list functions. Rewrite the solver framework to include such a class. 
What are the advantages of doing so for the maintainability, 
understandability, and usefulness of the framework? The disadvantages? 



304 Part IV: Programming in Java 
 

3. The current solver stops when it finds the first solution. Extend it to 
include a nextSolution() method that continues the search until it 
finds a next solution, and a reset() method that resets the search to the 
beginning.  

4. Use the Java framework of Section 22.5 to create depth-first, breadth-
first, and best-first solutions for the Missionary and Cannibal problem.  

Three missionaries and three cannibals come to the bank of a 
river they wish to cross. There is a boat that will hold only two, 
and any of the group is able to row. If there are ever more 
missionaries than cannibals on any side of the river the cannibals 
will get converted. Devise a series of moves to get all the people 
across the river with no conversions. 

5. Use and extend your code of problem 4 to check alternative forms of 
the missionary and cannibal problem—for example, when there are four 
missionaries and four cannibals and the boat holds only two. What if the 
boat can hold three? Try to generalize solutions for the whole class of 
missionary and cannibal problems.  

6. Use the Java framework of Section 22.5 to create depth-first, breadth-
first, and best-first solutions for the Water Jugs problem: 

There are two jugs, one holding 3 and the other 5 gallons of 
water. A number of things can be done with the jugs: they can 
be filled, emptied, and dumped one into the other either until 
the poured-into jug is full or until the poured-out-of jug is 
empty. Devise a sequence of actions that will produce 4 gallons 
of water in the larger jug. (Hint: use only integers.) 

  

 

 

 


